Global variability of carbon use efficiency in terrestrial ecosystems

Author:

Tang XiaoluORCID,Carvalhais NunoORCID,Moura Catarina,Ahrens Bernhard,Koirala SujanORCID,Fan Shaohui,Guan Fengying,Zhang Wenjie,Gao SicongORCID,Magliulo VincenzoORCID,Buysse Pauline,Liu Shibin,Chen Guo,Yang Wunian,Yu ZhenORCID,Liang Jingjing,Shi Leilei,Pu Shenyan,Reichstein Markus

Abstract

Abstract. Vegetation carbon use efficiency (CUE) is a key measure of carbon (C) transfer from the atmosphere to terrestrial biomass, and indirectly reflects how much C is released through autotrophic respiration from the vegetation to the atmosphere. Diagnosing the variability of CUE with climate and other environmental factors is fundamental to understand its driving factors, and to further fill the current gaps in knowledge about the environmental controls on CUE. Thus, to study CUE variability and its driving factors, this study established a global database of site-year CUE based on observations from 188 field measurement sites for five ecosystem types – forest, grass, wetland, crop and tundra. The spatial pattern of CUE was predicted from global climate and soil variables using Random Forest, and compared with estimates from Dynamic Global Vegetation Models (DGVMs) from the TRENDY model ensemble. Globally, we found two prominent CUE gradients in ecosystem types and latitude, that is, CUE varied with ecosystem types, being the highest in wetlands and lowest in grassland, and CUE decreased with latitude with the lowest CUE in tropics, and the highest CUE in higher latitude regions. CUE varied greatly between data-derived CUE and TRENDY-CUE, but also among TRENDY models. Both data-derived and TRENDY-CUE challenged the constant value of 0.5 for CUE, independent of environmental controls. However, given the role of CUE in controlling the spatial and temporal variability of the terrestrial biosphere C cycle, these results emphasize the need to better understand the biotic and abiotic controls on CUE to reduce the uncertainties in prognostic land-process model simulations. Finally, this study proposed a new estimate of net primary production based on CUE and gross primary production, offering another benchmark for net primary production comparison for global carbon modelling.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3