Automatic Quantitative Coronary Analysis Based on Deep Learning

Author:

Liu Xuqing1ORCID,Wang Xiaofei1,Chen Donghao1,Zhang Honggang1

Affiliation:

1. School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

As a core technique to quantitatively assess the stenosis severity of coronary arteries, quantitative coronary analysis (QCA) is urgently supposed to become more automated and intelligent, especially for regions lacking expertise and technology. The existing QCA methods highly depend on manual operation, which is time-consuming and subject to personal experience. This study innovatively proposes a fully automatic QCA workflow based on artificial intelligence (AI-QCA), which can quickly and accurately make a quantitative assessment of stenosis severity. The whole AI-QCA workflow mainly consists of three parts: the boundary-aware segmentation on the coronary angiogram (CAG) images, the AI-enabled coronary artery tree construction, and the diameter fitting and stenosis detection. Experiments show that the precision, recall, and F1 score of the segmentation, evaluated on 1322 CAGs, are 0.866, 0.897, and 0.879, respectively. Furthermore, the RMSE between diameter stenosis assessed by AI-QCA and manual QCA served by senior experts, evaluated on 249 CAGs, is 0.064, and the Pearson coefficient is 0.765. Meanwhile, the operation time can be reduced from tens of minutes to several seconds by AI-QCA. As a conclusion, the proposed AI-QCA is able to quickly quantify stenosis parameters as accurately as senior experts, which is significant for the intelligent diagnosis and treatment of coronary artery disease.

Funder

National Natural Science Foundation of China

BUPT Excellent Ph.D. Students Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3