MFAMNet: Multi-Scale Feature Attention Mixture Network for Short-Term Load Forecasting

Author:

Yang Shengchun1,Zhu Kedong1,Li Feng1,Weng Liguo2,Cheng Liangcheng1

Affiliation:

1. Power Automation Department, China Electric Power Research Institute, Nanjing 210003, China

2. Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Short-term load forecasting is an important prerequisite for smart grid controls. The current methods are mainly based on the convolution neural network (CNN) or long short-term memory (LSTM) model to realize load forecasting. For the multi-factor input sequence, the existing methods cannot obtain multi-scale features of the time series and the important parameters of the multi-factor, resulting in low accuracy and robustness. To address these problems, a multi-scale feature attention hybrid network is proposed, which uses LSTM to extract the time correlation of the sequence and multi-scale CNN to automatically extract the multi-scale feature of the load. This work realizes the integration of features by constructing a circular network. In the proposed model, a two-branch attention mechanism is further constructed to capture the important parameters of different influencing factors to improve the model’s robustness, which can make the network to obtain effective features at the curve changes. Comparative experiments on two open test sets show that the proposed multi-scale feature attention mixture network can achieve accurate short-term load forecasting and is superior to the existing methods.

Funder

Science and Technology Project of SGCC

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3