Analysis and evaluation of two short-term load forecasting techniques

Author:

Panda Saroj Kumar1,Ray Papia1ORCID

Affiliation:

1. Department of Electrical Engineering , VSSUT , Burla , Sambalpur 768018 , India

Abstract

Abstract Short-term load forecasting (STLF) is very important for an efficient operation of the power system because the exact and stable load forecasting brings good results to the power system. This manuscript presents the application of two new models in STLF i.e. Cross multi-models and second decision mechanism and Residential load forecasting in smart grid using deep neural network models. In the cross multi-model and second decision mechanism method, the horizontal and longitudinal load characteristics are useful for the construction of the model with the calculation of the total load. The dataset for this model is considered from Maine in New England, Singapore, and New South Wales of Australia. While, In the residential load forecasting method, the Spatio-temporal correlation technique is used for the construction of the iterative ResBlock and deep neural network which helps to give the characteristics of residential load with the use of a publicly available Redd dataset. The performances of the proposed models are calculated by the Root Mean Square Error, Mean Absolute Error, and Mean Absolute Percentage Error. From the simulation results, it is concluded that the performance of cross multi-model and second decision mechanism is good as compare to the residential load forecasting.

Publisher

Walter de Gruyter GmbH

Subject

Energy Engineering and Power Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Neural Network Algorithm to Load Forecasting of Distribution Network;2024 International Conference on Electrical Drives, Power Electronics & Engineering (EDPEE);2024-02-27

2. Charging station quantity planning model based on neural network and electric load forecasting model;Seventh International Conference on Mechatronics and Intelligent Robotics (ICMIR 2023);2023-09-11

3. A Survey on Weather Prediction using Big Data and Machine Learning Techniques;2023 5th International Conference on Energy, Power and Environment: Towards Flexible Green Energy Technologies (ICEPE);2023-06-15

4. MFAMNet: Multi-Scale Feature Attention Mixture Network for Short-Term Load Forecasting;Applied Sciences;2023-02-26

5. Short - Term Power Load Forecasting Algorithm Based on Combination Forecasting Method;Lecture Notes on Data Engineering and Communications Technologies;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3