A Knowledge Graph Embedding Approach for Polypharmacy Side Effects Prediction

Author:

Kim Jinwoo1ORCID,Shin Miyoung1

Affiliation:

1. Bio-Intelligence & Data Mining Lab., School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

Predicting the side effects caused by drug combinations may facilitate the prescription of multiple medications in a clinical setting. So far, several prediction models of multidrug side effects based on knowledge graphs have been developed, showing good performance under constrained test conditions. However, these models usually focus on relationships between neighboring nodes of constituent drugs rather than whole nodes, and do not fully exploit the information about the occurrence of single drug side effects. The lack of learning the information on such relationships and single drug data may hinder improvement of performance. Moreover, compared with all possible drug combinations, the highly limited range of drug combinations used for model training prevents achieving high generalizability. To handle these problems, we propose a unified embedding-based prediction model using knowledge graph constructed with data of drug–protein and protein–protein interactions. Herein, single or multiple drugs or proteins are mapped into the same embedding space, allowing us to (1) jointly utilize side effect occurrence data associated with single drugs and multidrug combinations to train prediction models and (2) quantify connectivity strengths between drugs and other entities such as proteins. Due to these characteristics, it becomes also possible to utilize the quantified relationships between distant nodes, as well as neighboring nodes, of all possible multidrug combinations to regularize the models. Compared with existing methods, our model showed improved performance, especially in predicting the side effects of new combinations containing novel drugs that have no clinical information on polypharmacy effects. Furthermore, our unified embedding vectors have been shown to provide interpretability, albeit to a limited extent, for proteins highly associated with multidrug side effect.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference64 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3