DPSP: a multimodal deep learning framework for polypharmacy side effects prediction

Author:

Masumshah Raziyeh1,Eslahchi Changiz12ORCID

Affiliation:

1. Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University , Tehran 1983969411, Iran

2. School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM) , Tehran 193955746, Iran

Abstract

Abstract Motivation Because unanticipated drug–drug interactions (DDIs) can result in severe bodily harm, identifying the adverse effects of polypharmacy is one of the most important tasks in human health. Over the past few decades, computational methods for predicting the adverse effects of polypharmacy have been developed. Results This article presents DPSP, a framework for predicting polypharmacy side effects based on the construction of novel drug features and the application of a deep neural network to predict DDIs. In the first step, a variety of drug information is evaluated, and a feature extraction method and the Jaccard similarity are used to determine similarities between two drugs. By combining these similarities, a novel feature vector is generated for each drug. In the second step, the method predicts DDIs for specific DDI events using a multimodal framework and drug feature vectors. On three benchmark datasets, the performance of DPSP is measured by comparing its results to those of several well-known methods, such as GNN–DDI, MSTE, MDF–SA–DDI, NNPS, DDIMDL, DNN, DeepDDI, KNN, LR, and RF. DPSP outperforms these classification methods based on a variety of classification metrics. The results indicate that the use of diverse drug information is effective and efficient for identifying DDI adverse effects. Availability and implementation The source code and datasets are available at https://github.com/raziyehmasumshah/DPSP.

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Genetics,Molecular Biology,Structural Biology

Reference50 articles.

1. Prediction of drug-drug interaction events using graph neural networks based feature extraction;Al-Rabeah;Sci Rep,2022

2. Random forests;Breiman;Mach Learn,2001

3. Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties;Cheng;J Am Med Inform Assoc,2014

4. A multimodal deep learning framework for predicting drug–drug interaction events;Deng;Bioinformatics,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3