Affiliation:
1. Department of Chemistry and Technology of Materials, Yuri Gagarin State Technical University of Saratov, 77 Polytecnicheskaya Street, 410054 Saratov, Russia
Abstract
In this paper, LixCa(1−x)Cu3Ti4O12 (LCCTO) solid solutions were successfully synthesized. XRD diagrams showed that dopant acceptor Li+ cations, in a concentration range of x = 0.01–0.10, were successfully merged into CCTO structure. It was found that doping with low concentrations of lithium (x < 0.05) inhibited grain growth during annealing; however, for x > 0.05, the grain growth process resumed. Permittivity and dielectric losses of obtained LCCTO ceramics were analyzed by the means of impedance spectroscopy in a frequency range from 10−1 to 106 Hz. It was revealed that acceptor doping with lithium at an appropriate concentration of x = 0.05 allowed to obtain ceramics with a permittivity level of ε′ = 3 × 104 and low dielectric losses tanδ < 0.1 at 1 kHz. Further addition of lithium in a concentration range of x = 0.075–0.10 led to a sharp decline in permittivity and an increase in dielectric losses. It was discovered that lithium addition to CCTO ceramics drastically decreased grain boundary resistivity from 115 MΩ·cm to 5–40 MΩ·cm at x = 0.01–0.10. Using Havriliak–Negami equation, the relaxation times for grain dipoles and grain boundary dipoles were found to be ranging from 0.8 × 10−6 to 1.7 × 10−6 s and from 0.4 × 10−4 to 7.1 × 10−4 s, respectively. The developed materials can be used in the manufacture of Multilayer Ceramic Capacitors (MLCC) as a dielectric.
Funder
Russian Science Foundation
Subject
Engineering (miscellaneous),Ceramics and Composites
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献