Abstract
Wildland firefighting requires managers to make decisions in complex decision environments that hold many uncertainties; these decisions need to be adapted dynamically over time as fire behavior evolves. Models used in firefighting decisions should also have the capability to adapt to changing conditions. In this paper, detailed line construction constraints are presented for use with a stochastic mixed integer fire growth and behavior program. These constraints allow suppression actions to interact dynamically with stochastic predicted fire behavior and account for many of the detailed line construction considerations. Such considerations include spatial restrictions for fire crew travel and operations. Crew safety is also addressed; crews must keep a variable safety buffer between themselves and the fire. Fireline quality issues are accounted for by comparing control line capacity with fireline intensity to determine when a fireline will hold. The model assumes crews may work at varying production rates throughout their shifts, providing flexibility to fit work assignments with the predicted fire behavior. Nonanticipativity is enforced to ensure solutions are feasible for all modeled weather scenarios. Test cases demonstrate the model’s utility and capability on a raster landscape.
Reference34 articles.
1. Interagency Standards for Fire and Fire Aviation Operations,2019
2. Beyond ICS: How Should We Govern Complex Disasters in the United States?
3. A Simple Fire-Growth Model
4. A Mathematical Model for Predicting Fire Spread in Wildland Fuels;Rothermel,1972
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献