A robust optimisation approach for the placement of forest fire suppression resources

Author:

Mendes André Bergsten1ORCID,e Alvelos Filipe Pereira2

Affiliation:

1. RouteLab – Research on Optimization, Simulation, Transportation and Environment, Department of Naval Architecture and Ocean Engineering University of Sao Paulo Av. Prof. Mello Moraes 2231 Sao Paulo 05508‐030 Brazil

2. Production and Systems Department, ALGORITMI Research Center, LASI University of Minho Braga 4710‐057 Portugal

Abstract

AbstractThis research develops an initial attack plan for combating forest fires in any wildland areas susceptible to fire outbreaks. To be eligible for such a plan, the landscape must have been previously mapped and modelled concerning spatial and topographic data and fuel levels. Thus, when ignition occurs, one can predict the expected fire behaviour in terms of spread direction and rate of spread. With such information, decisions can be taken on where and when to position the suppression resources. This paper extends a recent contribution to this subject, generalising each node's resource requirement, allowing a more precise modelling of non‐homogeneous landscapes. Moreover, we treat the cases where the estimated number of resources may not be sufficient to deal with the fire intensity, which becomes revealed only at the fire scene. In such cases, additional resources may be needed to contain the fire effectively. This worst‐case approach is modelled with the support of the robust optimisation paradigm. We propose a deterministic mathematical programming model, a robust optimisation counterpart, and a robust tabu search (RoTS) algorithm. We adapt instances from the literature, which are optimally solved by a commercial solver and used for assessing the quality of the RoTS. The proposed algorithm could optimally solve 94 of 96 instances. Finally, we conducted a Monte Carlo simulation as part of a risk analysis assessment of the generated solutions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3