Abstract
We construct the Green function of the first boundary-value problem for a diffusion-wave equation with fractional derivative with respect to the time variable. The Green function is sought in terms of a double-layer potential of the equation under consideration. We prove a jump relation and solve an integral equation for an unknown density. Using the Green function, we give a solution of the first boundary-value problem in a multidimensional cylindrical domain. The fractional differentiation is given by the Dzhrbashyan–Nersesyan fractional differentiation operator. In particular, this covers the cases of equations with the Riemann–Liouville and Caputo derivatives.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献