On representation of solution of the diffusion equation with Dzhrbashyan-Nersesyan operators

Author:

Богатырева Ф.Т.ORCID

Abstract

В работе исследуется параболическое уравнение в частных производных с дробным дифференцированием по одной из двух независимых переменных, ассоциируемой со временем. Такие уравнения принято относить к классу уравнений дробной диффузии. Оператор дробного дифференцирования представляет собой линейную комбинацию двух операторов Джрбашяна-Нерсесяна. Основным результатом работы является теорема об общем представлении регулярных решений исследуемого уравнения в бесконечной полосе. В терминах функции Райта построено фундаментальное решение и изучены его основные свойства. В частности, доказаны формулы дробного дифференцирования, исследовано асимптотическое поведение и получены оценки для фундаментального решения и его производных при больших и малых значениях автомодельной переменной, доказана его положительность. Для построения общего решения использован метод функции Грина, адаптированный к уравнениям, содержащим операторы Джрбашяна-Нерсесяна. К частным случаям рассматриваемого уравнения относятся уравнения с производными Римана-Лиувилля и Герасимова-Капуто. Поэтому полученные результаты остаются справедливыми и для уравнений с этими операторами дробного дифференцирования и их комбинациями. The paper investigates a parabolic partial differential equation with fractional differentiation with respect to one of two independent variables associated with time. Such equations are usually referred to the class of fractional diffusion equations. The fractional differentiation operator is a linear combination of two Dzhrbashyan-Nersesyan operators. The main result of the work is a theorem on the general representation of regular solutions of the equation under study in an infinite strip. A fundamental solution is constructed in terms of the Wright function and its main properties are studied. In particular, formulas for fractional differentiation are proved, the asymptotic behavior is investigated, and estimates are obtained for the fundamental solution and its derivatives for large and small values of the self-similar variable, and its positiveness is proved. To construct a general solution, the Green’s function method adapted to equations containing Dzhrbashyan-Nersesyan operators is used. Particular cases of the equation under consideration include equations with Riemann-Liouville and Gerasimov-Caputo derivatives. Therefore, the results obtained remain valid for equations with these fractional differentiation operators and their combinations.

Publisher

Institute of Cosmophysical Research and Radio Wave Propagation Far Eastern Branch of the Russian Academy of Sciences

Reference18 articles.

1. Джрбашян М.М., Нерсесян А.Б. Дробные производные и задача Коши для дифференциальных уравнений дробного порядка, Изв. АН АрмССР. Матем., 1968. Т. 3, №1, С. 3–28.

2. Нахушев А.М. Дробное исчисление и его применение. М.: Физматлит, 2003. 272 с.

3. Псху А.В.Решение первой краевой задачи для уравнения диффузии дробного порядка, Дифференц. уравнения, 2003. Т. 39, №9, С. 1286–1289.

4. Псху А.В.Решение краевых задач для уравнения диффузии дробного порядка методом функции Грина, Дифференц. уравнения, 2003. Т. 39, №10, С. 1430–1433.

5. Eidelman S.D., Kochubei A.N. Cauchy problem for fractional diffusion equations, J. Differential Equations, 2004. vol. 199, pp. 211–255.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3