Effects of Channel Length Scaling on the Electrical Characteristics of Multilayer MoS2 Field Effect Transistor

Author:

Radhakrishnan Sreevatsan1ORCID,Vishnu Suggula Naga Sai1,Ahmed Syed Ishtiyaq1,Thiruvengadathan Rajagopalan12ORCID

Affiliation:

1. SIERS Research Laboratory, Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India

2. Mechanical Engineering Program, Department of Engineering and Technology, Southern Utah University, Cedar City, UT 84720, USA

Abstract

With the rapid miniaturization of integrated chips in recent decades, aggressive geometric scaling of transistor dimensions to nanometric scales has become imperative. Recent works have reported the usefulness of 2D transition metal dichalcogenides (TMDs) like MoS2 in MOSFET fabrication due to their enhanced active surface area, thin body, and non-zero bandgap. However, a systematic study on the effects of geometric scaling down to sub-10-nm nodes on the performance of MoS2 MOSFETs is lacking. Here, the authors present an extensive study on the performance of MoS2 FETs when geometrically scaled down to the sub-10 nm range. Transport properties are modelled using drift-diffusion equations in the classical regime and self-consistent Schrödinger-Poisson solution using NEGF formulation in the quantum regime. By employing the device modeling tool COMSOL for the classical regime, drain current vs. gate voltage (ID vs. VGS) plots were simulated. On the other hand, NEGF formulation for quantum regions is performed using MATLAB, and transfer characteristics are obtained. The effects of scaling device dimensions, such as channel length and contact length, are evaluated based on transfer characteristics by computing performance metrics like drain-induced barrier lowering (DIBL), on-off currents, subthreshold swing, and threshold voltage.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3