Transferability of Diffractive Structure in the Compression Molding of Chalcogenide Glass

Author:

Son Byeong-Rea1,Kim Ji-Kwan2,Choi Young-Soo2,Park Changsin1ORCID

Affiliation:

1. Department of Automotive Engineering, Honam University, Gwangju 62399, Republic of Korea

2. Department of Mechanical Convergence Engineering, Gwangju University, Gwangju 61743, Republic of Korea

Abstract

This study investigates the use of Ge28Sb12Se60 chalcogenide glass for the compression molding of an infrared optical lens with a diffractive structure. Firstly, a mold core was prepared through ultra-precision grinding of tungsten carbide, and a chalcogenide glass preform was crafted through a polishing process and designed with a radius that would prevent gas isolation during the molding process. The test lens was then molded at various temperature conditions using the prepared mold core and preform. The diffractive structures of both the mold core and the resulting molded lens were analyzed using a microscope and white light interferometer. The comparison of these diffractive structures revealed that the molding temperature had an effect on the transferability of the diffractive structure during the molding of the chalcogenide glass lens. Furthermore, it was determined that, when the molding temperature was properly adjusted, the diffractive structure of the core could be fully transferred to the surface of the chalcogenide lens. Optimized chalcogenide glass-based lenses have the potential to serve as cost-effective yet high-performance IR optics.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3