Analysis on the instability of the surface profiles of precision molding chalcogenide glass aspherical lenses in mass production

Author:

Liu Yue1,Xue Changxi1,Sun Gaofei2,Zhang Guoyv2ORCID

Affiliation:

1. Changchun University of Science and Technology

2. Jilin Province Engineering Research Center

Abstract

Chalcogenide glass lenses have been widely applied in infrared optical systems for their outstanding optical performance. It is a tendency for complex optical glass elements to be mass-produced with precision glass molding (PGM) technology, of course including chalcogenide glass aspheric lenses. But there is a problem that sometimes the surface profiles of the molded lenses are unstable which leads to a low pass-yield. Precision glass molding experiments and finite elements simulations are carried out to study the reasons for the mentioned problem in this paper. The results reveal that the laying error of the ball chalcogenide glass preform does not have a significant effect on the surface profile of the molded lens. However, in mass production the control of the temperature after forming stage in the PGM process is very important for obtaining the molded lenses with very similar surface profiles. The research results could help relevant researchers design the PGM processing parameters to overcome some errors in the mass production and manufacture precision glass molding machines. The increase in the yield of complex optical glass elements fabricated by PGM technology will further promote the application of such elements in various fields.

Funder

Natural Science Foundation of Jilin Province

Jilin Scientific and Technological Development Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3