Artificial Intelligence Model in Predicting Geomechanical Properties for Shale Formation: A Field Case in Permian Basin

Author:

Nath FatickORCID,Asish Sarker MonojitORCID,Ganta DeepakORCID,Debi Happy Rani,Aguirre Gabriel,Aguirre Edgardo

Abstract

Due to complexities in geologic structure, heterogeneity, and insufficient borehole information, shale formation faces challenges in accurately estimating the elastic properties of rock which triggers severe technical challenges in safe drilling and completion. These geomechanical properties could be computed from acoustic logs, however, accurate estimation is critical due to log deficit and a higher recovery expense of inadequate datasets. To fill the gap, this study focuses on predicting the sonic properties of rock using deep neural network (Bi-directional long short-time memory, Bi-LSTM) and random forest (RF) algorithms to estimate and evaluate the geomechanical properties of the potential unconventional formation, Permian Basin, situated in West Texas. A total of three wells were examined using both single-well and cross-well prediction algorithms. Log-derived single-well prediction models include a 75:25 ratio for training and testing the data whereas the cross-well includes two wells for training and the remaining well was used for testing. The selected well input logs include compressional wave slowness, resistivity, gamma-ray, porosity, and bulk density to predict shear wave slowness. The results using RF and Bi-LSTM show a promising prediction of geomechanical properties for Permian Basin wells. RF algorithm performed superior for both single and grouped well prediction. The single-well prediction method using the RF algorithm provided the highest accuracy of 99.90% whereas Bi-LSTM gave 93.60%. The best accuracy for a grouped well prediction was achieved employing Bi-LSTM and RF models, i.e., 96.01% and 93.80%. The average prediction including RF and Bi-LSTM algorithms demonstrated that accuracy for single well and cross well prediction is 96% and 94% respectively with an error below 7%. These outcomes show the astonishing capability of artificial intelligence (AI) models trained to create a realistic prediction to unlock unconventional potential when datasets are inadequate. Given adequate training data, operators could leverage these efficient tools by utilizing them to examine fracture interpretations with reduced cost and time when datasets are incomplete and thus increase the hydrocarbon recovery potential.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference59 articles.

1. Geomechanical properties of unconventional shale reservoirs;J. Pet. Eng.,2014

2. Shear-Wave Velocity Estimation in Porous Rocks: Theoretical Formulation, Preliminary Verification and applications1;Geophys. Prospect.,1992

3. Characterization of Elastic Mechanical Properties of Tuscaloosa Marine Shale from Well Logs Using the Vertical Transversely Isotropic Model;Interpretation,2020

4. Empirical Relations between Rock Strength and Physical Properties in Sedimentary Rocks;J. Pet. Sci. Eng.,2006

5. Prediction of Compressional, Shear, and Stoneley Wave Velocities from Conventional Well Log Data Using a Committee Machine with Intelligent Systems;Rock Mech. Rock Eng.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3