Affiliation:
1. College of Mathematics and Science, Chengdu University of Technology, Chengdu 610059, China
2. Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, China
Abstract
Shear wave velocity (VS) is a vital prerequisite for rock geophysics. However, due to historical, cost, and technical reasons, the shear wave velocity of some wells is missing. To reduce the deviation of the description of underground oil and gas distribution, it is urgent to develop a high-precision neural network prediction method. In this paper, an attention module is designed to automatically calculate the weight of each part of the input value. Then, the weighted data are fed into the long short-term memory network to predict shear wave velocities. Numerical simulations demonstrate the efficacy of the proposed method, which achieves a significantly lower MAE of 38.89 compared to the LSTM network’s 45.35 in Well B. In addition, the relationship between network input length and prediction accuracy is further analyzed.
Funder
Creative Research Groups of the Natural Science Foundation of Sichuan
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献