Analysis of Spatial–Temporal Variations and Driving Factors of Typical Tail-Reach Wetlands in the Ili-Balkhash Basin, Central Asia

Author:

Cao Yijie,Ma Yonggang,Liu TieORCID,Li JunliORCID,Zhong Ruisen,Wang ZhengORCID,Zan Chanjuan

Abstract

The Ili River Delta (IRD) is the largest delta in the arid zone of Central Asia. Since the 1970s, the entire delta system has undergone a series of changes due to climate change and the impoundment of the Kapchagay Reservoir upstream of the delta, triggering an ecological crisis. Wetlands play a crucial ecological role in biodiversity conservation. Most studies have mainly focused on the response of vegetation and soil microbial to ecological changes in the delta, ignoring the dynamic processes of wetlands changes. Hence, such changes in the IRD and the underlying mechanisms need to be investigated in depth. In this study, wetlands in the IRD from 1975 to 2020 were extracted based on Landsat images using the object-oriented method; changes in the wetland area, wetland landscape pattern, NDVI, and NPP were analyzed; and the contributions of natural and human factors to wetland evolution were quantified. The results indicated the following: (1) From 1975 to 2020, the wetland area of the IRD showed an increasing trend, and changes in the wetland area were mainly found in the middle part of the delta near the Saryesik Peninsula. (2) The wetland landscape pattern in the IRD changed markedly from 1975 to 2020. The dominant patches of the wetland in the middle of the delta continued to expand; the patch aggregation index (AI) increased, and the landscape fragmentation index (LFI) decreased. (3) From 2000 to 2020, the average annual normalized difference vegetation index (NDVI) and net primary productivity (NPP) in the IRD increased, which is consistent with the change in wetland expansion. (4) Inflow to the delta from the Ili River and the water level of Balkhash Lake are significantly correlated with the wetland area, which are the dominant factors driving wetland evolution; and water evaporation from the Kapchagay Reservoir and irrigation water diversion on the left bank of the reservoir obviously intensified the process of lake water level decline and wetland degradation during 1970 to 1985. These results can provide scientific background for making informed ecological protection decisions in the IRD under the impacts of climate change and human activities.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference51 articles.

1. Remote sensing dynamic monitoring and ecological environmental changes of Bashang Plateau wetland from 2000 to 2018;Jie;Miner. Explor.,2020

2. 2013 Supplement to the 2006 Ipcc Guidelines for National Greenhouse Gas Inventories: Wetlands;Hiraishi,2014

3. Remote Sensing Monitoring and Analyses of the Dynamic Change of Balkhash Lake in the last 30 years;Gao;Environ. Sustain. Dev.,2016

4. Changes in the water level of Lake Balkhash and its causes;Yang;Arid Land Geogr.,1993

5. Analysis of Balkhash Lake ecological water level evolvement and its regulation strategy;Deng;J. Hydraul. Eng.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3