Predicting and evaluating seasonal water turbidity in Lake Balkhash, Kazakhstan, using remote sensing and GIS

Author:

Mishra Kanchan,Choudhary Bharat,Fitzsimmons Kathryn E.

Abstract

Lake Balkhash is Asia’s third-largest lake and an endorheic basin. The lake and its contributing tributaries provide essential water and ecosystem services to the surrounding population, particularly in the Kazakh region. With approximately 2.5 million people living in the areas such as Almaty oblast, Zhetisu oblast, several districts of Karagandy oblast, and Abay province, monitoring and maintaining the lake’s health and water quality is essential for the sustainable management of water resources. The hydrology of Lake Balkhash has been significantly impacted in recent decades by a warming climate, landuse landcover changes, and water-consuming economic activities, the latter of which are driven by population growth and expansion. Turbidity—the measurement of water clarity—serves as a major indicator of water health. Here, we analyze spatial and temporal variability in turbidity across Lake Balkhash by mapping the normalized difference turbidity index (NDTI) based on Landsat data for 1991–2022. We consider major exploratory variables such as precipitation, near-surface temperature, wind speed and direction, water level, and landuse landcover (LULC) within the catchment. We find an overall decrease in turbidity over interannual and seasonal timescales. We observe significant negative correlations between NDTI, near-surface temperature, and water level at both scales but no clear relationship between turbidity and precipitation or wind variables. Among the LULC variables, grassland and bareland near Lake Balkhash showed a positive correlation with NDTI but have spatially decreased over time. Conversely, shrubland and wetland exhibit a negative correlation with NDTI; however, this has spatially increased with time. Our results highlight the significant impact of rising temperatures, anthropogenically influenced water levels, and the LULC variables on turbidity. The turbidity dynamics, in turn, influence the circulation, oxidation, and overall health of Lake Balkhash’s water. Therefore, the study emphasizes that the warming climate and alterations in the lake’s hydrology have a considerable impact on water quality. This suggests that monitoring water health alone may not suffice to mitigate the impacts of climate change and human activities. However, a more comprehensive approach is needed to sustainably manage and conserve dryland water resources.

Funder

Bundesministerium für Bildung und Forschung

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3