Visual Localization and Target Perception Based on Panoptic Segmentation

Author:

Lv Kefeng,Zhang Yongsheng,Yu Ying,Zhang Zhenchao,Li Lei

Abstract

Visual localization is a core part of many computer vision and geospatial perception applications; however, the ever-changing time phase and environment present challenges. Moreover, the ever-enriching spatial data types and sensors create new conditions for visual localization. Based on the prior 3D model and the location sensor, the current study proposes a visual localization method using semantic information. This method integrates panoptic segmentation and the matching network to refine the sensor’s position and orientation and complete the target perception. First, the panoptic segmentation and the match network are used together to segment and match the 3D- model-rendered image and the truth image. The matching results are then optimized based on the semantic results. Second, the semantic consistency score is introduced in the RANSAC process to estimate the optimal 6 degree-of-freedom (6DOF) pose. In the final stage, the estimated 6DOF pose, the instance segmentation results, and the depth information are used to locate the target. Experimental results show that the proposed method is a significant improvement on advanced methods for the long-term visual localization benchmark dataset. Additionally, the proposed method is seen to provide improved localization accuracy and is capable of accurately perceiving the target for self-collected data.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference44 articles.

1. Progress and challenges of geospatial artificial intelligence;Zhang;Acta Geod. Et Cartogr. Sin.,2021

2. Duplicated Reality for Co-located Augmented Reality Collaboration

3. Multi-Sensor Fusion Tracking Algorithm Based on Augmented Reality System

4. Semantic Image Alignment for Vehicle Localization;Herb;Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),2021

5. Coarse-to-fine Semantic Localization with HD Map for Autonomous Driving in Structural Scenes;Guo;Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3