Abstract
The BeiDou global navigation satellite system (BDS-3) has already provided worldwide navigation and positioning services for which the high-precision BDS-3-predicting orbit is the foundation. The arc length of the observed orbits and the solar radiation pressure (SRP) are two important factors for producing precise orbit predictions. The contribution studies the influences of these factors on BDS-3 orbit prediction. Three-month data from 1 July 2021 to 30 September 2021 are used to analyze optimal arc lengths and different ECOM SRP models for obtaining precise BDS-3 orbit predictions. The results show that the best-fitting arc length for the BDS-3 MEO/IGSO satellite is 42–48 h by comparing the final precise ephemeris and SLR validation. Furthermore, the ECOM9 SRP model shows improved orbit-prediction accuracy than that of the ECOM5 SRP model when the satellites move in and out of the eclipse season. As for the ECOM9 SRP model, the user range error (URE) accuracy of 6 h orbit predictions when satellites are in and outside of the eclipse season is 0.036 m and 0.030 m, respectively. In addition, the orbit prediction accuracy of the BDS-3 satellites does not decrease significantly since BDS-3 satellites apply the continuous yaw-steering (CYS) attitude mode during the eclipse season.
Funder
State Key Laboratory of Geo-Information Engineering and Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of MNR, CASM
the National Natural Science Foundation of China
Youth Innovation Promotion Association of Chinese Academy of Sciences
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献