Assessing the Performance of Multi-GNSS PPP-RTK in the Local Area

Author:

Ma HongyangORCID,Zhao Qile,Verhagen Sandra,Psychas Dimitrios,Liu XianglinORCID

Abstract

The benefits of an increased number of global navigation satellite systems (GNSS) in space have been confirmed for the robustness and convergence time of standard precise point positioning (PPP) solutions, as well as improved accuracy when (most of) the ambiguities are fixed. Yet, it is still worthwhile to investigate fast and high-precision GNSS parameter estimation to meet user needs. This contribution focuses on integer ambiguity resolution-enabled Precise Point Positioning (PPP-RTK) in the use of the observations from four global navigation systems, i.e., GPS (Global Positioning System), Galileo (European Global Navigation Satellite System), BDS (Chinese BeiDou Navigation Satellite System), and GLONASS (Global’naya Navigatsionnaya Sputnikova Sistema). An undifferenced and uncombined PPP-RTK model is implemented for which the satellite clock and phase bias corrections are computed from the data processing of a group of stations in a network and then provided to users to help them achieve integer ambiguity resolution on a single receiver by calibrating the satellite phase biases. The dataset is recorded in a local area of the GNSS network of the Netherlands, in which 12 stations are regarded as the reference to generate the corresponding corrections and 21 as the users to assess the performance of the multi-GNSS PPP-RTK in both kinematic and static positioning mode. The results show that the root-mean-square (RMS) errors of the ambiguity float solutions can achieve the same accuracy level of the ambiguity fixed solutions after convergence. The combined GNSS cases, on the contrary, reduce the horizontal RMS of GPS alone with 2 cm level to GPS + Galileo/GPS + Galileo + BDS/GPS + Galileo + BDS + GLONASS with 1 cm level. The convergence time benefits from both multi-GNSS and fixing ambiguities, and the performances of the ambiguity fixed solution are comparable to those of the multi-GNSS ambiguity float solutions. For instance, the convergence time of GPS alone ambiguity fixed solutions to achieve 10 cm three-dimensional (3D) positioning accuracy is 39.5 min, while it is 37 min for GPS + Galileo ambiguity float solutions; moreover, with the same criterion, the convergence time of GE ambiguity fixed solutions is 19 min, which is better than GPS + Galileo + BDS + GLONASS ambiguity float solutions with 28.5 min. The experiments indicate that GPS alone occasionally suffers from a wrong fixing problem; however, this problem does not exist in the combined systems. Finally, integer ambiguity resolution is still necessary for multi-GNSS in the case of fast achieving very-high-accuracy positioning, e.g., sub-centimeter level.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3