Deep and Machine Learning Image Classification of Coastal Wetlands Using Unpiloted Aircraft System Multispectral Images and Lidar Datasets

Author:

Gonzalez-Perez AliORCID,Abd-Elrahman AmrORCID,Wilkinson Benjamin,Johnson Daniel J.ORCID,Carthy Raymond R.

Abstract

The recent developments of new deep learning architectures create opportunities to accurately classify high-resolution unoccupied aerial system (UAS) images of natural coastal systems and mandate continuous evaluation of algorithm performance. We evaluated the performance of the U-Net and DeepLabv3 deep convolutional network architectures and two traditional machine learning techniques (support vector machine (SVM) and random forest (RF)) applied to seventeen coastal land cover types in west Florida using UAS multispectral aerial imagery and canopy height models (CHM). Twelve combinations of spectral bands and CHMs were used. Our results using the spectral bands showed that the U-Net (83.80–85.27% overall accuracy) and the DeepLabV3 (75.20–83.50% overall accuracy) deep learning techniques outperformed the SVM (60.50–71.10% overall accuracy) and the RF (57.40–71.0%) machine learning algorithms. The addition of the CHM to the spectral bands slightly increased the overall accuracy as a whole in the deep learning models, while the addition of a CHM notably improved the SVM and RF results. Similarly, using bands outside the three spectral bands, namely, near-infrared and red edge, increased the performance of the machine learning classifiers but had minimal impact on the deep learning classification results. The difference in the overall accuracies produced by using UAS-based lidar and SfM point clouds, as supplementary geometrical information, in the classification process was minimal across all classification techniques. Our results highlight the advantage of using deep learning networks to classify high-resolution UAS images in highly diverse coastal landscapes. We also found that low-cost, three-visible-band imagery produces results comparable to multispectral imagery that do not risk a significant reduction in classification accuracy when adopting deep learning models.

Funder

National Oceanic and Atmospheric Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference118 articles.

1. Coastal Habitats of the Gulf of Mexico

2. Are coastal habitats important nurseries? A meta‐analysis

3. Benefits of Mangroves;Florida Department of Environmental Protection,2022

4. Destruction of Coastal Ecosystems and The Vicious Cycle of Poverty in Niger Delta Region 2021 https://www.ikppress.org/index.php/JOGAE/article/view/6602

5. Tidal wetland stability in the face of human impacts and sea-level rise

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3