Reshaping Hyperspectral Data into a Two-Dimensional Image for a CNN Model to Classify Plant Species from Reflectance

Author:

Yuan Shaoxiong,Song Guangman,Huang Guangqing,Wang Quan

Abstract

Leaf-level hyperspectral-based species identification has a long research history. However, unlike hyperspectral image-based species classification models, convolutional neural network (CNN) models are rarely used for the one-dimensional (1D) structured leaf-level spectrum. Our research focuses on hyperspectral data from five laboratories worldwide to test the general use of effective identification of the CNN model by reshaping 1D structure hyperspectral data into two-dimensional greyscale images without principal component analysis (PCA) or downscaling. We compared the performance of two-dimensional CNNs with the deep cross neural network (DCN), support vector machine, random forest, gradient boosting machine, and decision tree in individual tree species classification from leaf-level hyperspectral data. We tested the general performance of the models by simulating an application phase using data from different labs or years as the unseen data for prediction. The best-performing CNN model had validation accuracy of 98.6%, prediction accuracy of 91.6%, and precision of 74.9%, compared to the support vector machine, with 98.6%, 88.8%, and 66.4%, respectively, and DCN, with 94.0%, 85.7%, and 57.1%, respectively. Compared with the reference models, CNNs more efficiently recognized Fagus crenata, and had high accuracy in Quercus rubra identification. Our results provide a template for a species classification method based on hyperspectral data and point to a new way of reshaping 1D data into a two-dimensional image, as the key to better species prediction. This method may also be helpful for foliar trait estimation.

Funder

Science and Technology Planning Project of Guangdong Province

Guangdong Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference54 articles.

1. Plant Species Identification Using Computer Vision Techniques: A Systematic Literature Review;Wäldchen,2018

2. A review of plant species identification techniques;Hassoon;Int. J. Sci. Res.,2018

3. Plant species identification using digital morphometrics: A review

4. Automated plant species identification—Trends and future directions

5. Deep-Plant: Plant identification with convolutional neural networks;Lee;Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP),2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3