Inferring Mass Loss by Measuring Contemporaneous Deformation around the Helheim Glacier, Southeastern Greenland, Using Sentinel-1 InSAR

Author:

Erfani Jazi Zohreh,Motagh MahdiORCID,Klemann VolkerORCID

Abstract

The elastic response of solid earth to glacier and ice sheet melting, the most important consequences of climate change, is a contemporaneous uplift. Here, we use interferometric synthetic aperture radar (InSAR) measurements to detect crustal deformation and mass loss near the Helheim glacier, one of the largest glaciers in southeastern Greenland. The InSAR time series of Sentinel-1 data between April 2016 and July 2020 suggest that there is a maximum cumulative displacement of ~6 cm in the line of sight (LOS) direction from the satellite to the ground near Helheim. We use an exponentially decreasing model of the thinning rate, which assumes that the mass loss starts at the lower-elevation terminal region of the glacier and continues to the higher-elevation interior. A linear inversion of the derived crustal uplift in the vicinity of bedrock using this model for surface loading in an elastic half-space suggests a mass loss of 8.33 Gt/year, which agrees with the results from other studies.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3