A Novel Method for Ground-Based Cloud Image Classification Using Transformer

Author:

Li Xiaotong,Qiu Bo,Cao Guanlong,Wu Chao,Zhang Liwen

Abstract

In recent years, convolutional neural networks (CNNs) have achieved competitive performance in the field of ground-based cloud image (GCI) classification. Proposed CNN-based methods can fully extract the local features of images. However, due to the locality of the convolution operation, they cannot well establish the long-range dependencies between the images, and thus they cannot extract the global features of images. Transformer has been applied to computer vision with great success due to its powerful global modeling capability. Inspired by it, we propose a Transformer-based GCI classification method that combines the advantages of the CNN and Transformer models. Firstly, the CNN model acts as a low-level feature extraction tool to generate local feature sequences of images. Then, the Transformer model is used to learn the global features of the images by efficiently extracting the long-range dependencies between the sequences. Finally, a linear classifier is used for GCI classification. In addition, we introduce a center loss function to address the problem of the simple cross-entropy loss not adequately supervising feature learning. Our method is evaluated on three commonly used datasets: ASGC, CCSN, and GCD. The experimental results show that the method achieves 94.24%, 92.73%, and 93.57% accuracy, respectively, outperforming other state-of-the-art methods. It proves that Transformer has great potential to be applied to GCI classification tasks.

Funder

the National Natural Science Foundation of China

the Hebei Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3