Improved RepVGG ground-based cloud image classification with attention convolution

Author:

Shi Chaojun,Han Leile,Zhang Ke,Xiang Hongyin,Li Xingkuan,Su Zibo,Zheng Xian

Abstract

Abstract. Atmospheric clouds greatly impact Earth's radiation, hydrological cycle, and climate change. Accurate automatic recognition of cloud shape based on a ground-based cloud image is helpful for analyzing solar irradiance, water vapor content, and atmospheric motion and then predicting photovoltaic power, weather trends, and severe weather changes. However, the appearance of clouds is changeable and diverse, and their classification is still challenging. In recent years, convolution neural networks (CNNs) have made great progress in ground-based cloud image classification. However, traditional CNNs poorly associate long-distance clouds, making the extraction of global features of cloud images quite problematic. This study attempts to mitigate this problem by elaborating on a ground-based cloud image classification method based on the improved RepVGG convolution neural network and attention mechanism. Firstly, the proposed method increases the RepVGG residual branch and obtains more local detail features of cloud images through small convolution kernels. Secondly, an improved channel attention module is embedded after the residual branch fusion, effectively extracting the global features of cloud images. Finally, the linear classifier is used to classify the ground cloud images. Finally, the warm-up method is applied to optimize the learning rate in the training stage of the proposed method, making it lightweight in the inference stage and thus avoiding overfitting and accelerating the model's convergence. The proposed method is validated on the multimodal ground-based cloud dataset (MGCD) and the ground-based remote sensing cloud database (GRSCD) containing seven cloud categories, with the respective classification accuracy rate values of 98.15 % and 98.07 % outperforming those of the 10 most advanced methods used as the reference. The results obtained are considered instrumental in ground-based cloud image classification.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3