Novel Fuzzy Logic Scheme for Push-Based Critical Data Broadcast Mitigation in VNDN

Author:

Khan Sajjad AhmadORCID,Lim HuhnkukORCID

Abstract

Vehicular Named Data Networking (VNDN) is one of the potential and future networking architectures that allow Connected and Autonomous Vehicles (CAV) to exchange data by simply disseminating the content over the network. VNDN only supports a pull-based data forwarding model, where the content information is forwarded upon request. However, in critical situations, it is essential to design a push-based data forwarding model in order to broadcast the critical data packets without any requests. One of the challenges of push-based data forwarding in VNDN is the broadcasting effect, which occurs when every vehicle broadcasts critical information over the network. For instance, in emergency situations such as accidents, road hazards, and bad weather conditions, the producer generates a critical data packet and broadcasts it to all the nearby vehicles. Subsequently, all vehicles broadcast the same critical data packet to each other, which leads to a broadcast storm on the network. Therefore, this paper proposes a Fuzzy Logic-based Push Data Forwarding (FLPDF) scheme to mitigate the broadcast storm effect. The novelty of this paper is the suggestion and application of a fuzzy logic approach to mitigate the critical data broadcast storm effect in VNDN. In the proposed scheme, vehicles are grouped into clusters using the K-means clustering algorithm, and then Cluster Heads (CHs) are selected using a fuzzy logic approach. A CH is uniquely responsible for broadcasting the critical data packets to all other vehicles in a cluster. A Gateway (GW) has the role of forwarding the critical data packets to the nearest clusters via their GWs. The simulation results show that the proposed scheme outperforms the naive method in terms of transmitted data packets and efficiency. The proposed scheme generates five times fewer data packets and achieves six times higher efficiency than the naive scheme.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3