Enhancing Object Detection in Self-Driving Cars Using a Hybrid Approach

Author:

Khan Sajjad Ahmad1ORCID,Lee Hyun Jun2,Lim Huhnkuk1ORCID

Affiliation:

1. Computer Engineering Department, Hoseo University, Asan 31499, Republic of Korea

2. AI Networks, Cheonan 31116, Republic of Korea

Abstract

Recent advancements in artificial intelligence (AI) have greatly improved the object detection capabilities of autonomous vehicles, especially using convolutional neural networks (CNNs). However, achieving high levels of accuracy and speed simultaneously in vehicular environments remains a challenge. Therefore, this paper proposes a hybrid approach that incorporates the features of two state-of-the-art object detection models: You Only Look Once (YOLO) and Faster Region CNN (Faster R-CNN). The proposed hybrid approach combines the detection and boundary box selection capabilities of YOLO with the region of interest (RoI) pooling from Faster R-CNN, resulting in improved segmentation and classification accuracy. Furthermore, we skip the Region Proposal Network (RPN) from the Faster R-CNN architecture to optimize processing time. The hybrid model is trained on a local dataset of 10,000 labeled traffic images collected during driving scenarios, further enhancing its accuracy. The results demonstrate that our proposed hybrid approach outperforms existing state-of-the-art models, providing both high accuracy and practical real-time object detection for autonomous vehicles. It is observed that the proposed hybrid model achieves a significant increase in accuracy, with improvements ranging from 5 to 7 percent compared to the standalone YOLO models. The findings of this research have practical implications for the integration of AI technologies in autonomous driving systems.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3