Utilizing Machine Learning to Examine the Spatiotemporal Changes in Africa’s Partial Atmospheric Layer Thickness

Author:

Ibebuchi Chibuike Chiedozie1,Abu Itohan-Osa2ORCID,Nyamekye Clement3,Agyapong Emmanuel3ORCID,Boamah Linda4

Affiliation:

1. Department of Geography, Kent State University, Kent, OH 44242, USA

2. Department of Remote Sensing, Würzburg University, 97074 Würzburg, Germany

3. Department of Civil Engineering, Koforidua Technical University, Koforidua 03420, Ghana

4. Department of Environmental Management and Technology, Koforidua Technical University, Koforidua 03420, Ghana

Abstract

As a crucial aspect of the climate system, changes in Africa’s atmospheric layer thickness, i.e., the vertical distance spanning a specific layer of the Earth’s atmosphere, could impact its weather, air quality, and ecosystem. This study did not only examine the trends but also applied a deep autoencoder artificial neural network to detect years with significant anomalies in the thickness of Africa’s atmosphere over a given homogeneous region (derived with the rotated principal component analysis) and examine the fingerprint of global warming on the thickness changes. The broader implication of this study is to further categorize regions in Africa that have experienced significant changes in their climate system. The study reveals an upward trend in thickness between 1000 and 850 hPa across substantial parts of Africa since 1950. Notably, the spatial breadth of this rise peaks during the boreal summer. Correlation analysis, further supported by the deep autoencoder neural network, suggests the fingerprint of global warming signals on the increasing vertical extent of Africa’s atmosphere and is more pronounced (since the 2000s) in the south-central regions of Africa (specifically the Congo Basin). Additionally, the thickness over the Sahel and Sahara Desert sees no significant increase during the austral summer, resulting from the counteracting effect of the positive North Atlantic Oscillation, which prompts colder conditions over the northern parts of Africa. As the atmospheric layer thickness impacts the temperature and moisture distribution of the layer, our study contributes to its historical assessment for a sustainable ecosystem.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3