Heat Transmission of Engine-Oil-Based Rotating Nanofluids Flow with Influence of Partial Slip Condition: A Computational Model

Author:

Hussain Azad,Arshad Mubashar,Rehman AyshaORCID,Hassan Ali,Elagan Sayed K.,Alshehri Nawal A.ORCID

Abstract

This particular research was conducted with the aim of describing the impact of a rotating nanoliquid on an elasting surface. This specific study was carried out using a two-phase nanoliquid model. In this study engine oil is used as the base fluid, and two forms of nanoparticles are used, namely, titanium oxide and zinc oxide (TiO2 and ZnO). Using appropriate similarity transformations, the arising system of partial differential equations and the related boundary conditions are presented and then converted into a system of ordinary differential equations. These equations are numerically tackled using powerful techniques. Graphs for nanoparticle rotation parameter and volume fraction for both types of nanoparticles present the results for the velocity and heat transfer features. Quantities of physical significance are measured and evaluated, such as local heat flux intensity and local skin friction coefficients at the linear stretching surface. Numerical values for skin friction and local heat flux amplitude are determined in the presence of slip factor.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3