Numerical assessment of irreversibility in radiated Sutterby nanofluid flow with activation energy and Darcy Forchheimer

Author:

ur Rahman Mujeeb,Haq Fazal,Ijaz Khan M.,Awwad Fuad A.,Ismail Emad A. A.

Abstract

AbstractEntropy generation is a concept that is primarily associated with thermodynamics and engineering, and it plays a crucial role in understanding and optimizing various processes and systems. Applications of entropy generation can be seen in turbo machinery, reactors, chillers, desert coolers, vehicle engines, air conditioners, heat transfer devices and combustion. Due to industrial applications entropy generation has gained attention of researchers. Owing such applications, current communication aims to model and analyzed the irreversibility in Sutterby nanoliquid flow by stretched cylinder. Momentum equation is reported by considering porosity, Darcy Forchheimer and magnetic field. While in energy equation radiation and Joule heating effects are accounted. Activation energy impact is accounted in the modeling of concentration equation. Thermodynamics second law is utilized for physical description of irreversibility analysis. Through similarity transformations dimensional equations representing flow are transformed to dimensionless ones. Numerical solution for ordinary system is obtained via Runge–Kutta-Fehlberg scheme in Mathematica platform through NDsolve code. Influence of prominent variables on velocity, entropy, temperature, Bejan number and concentration are graphically analyzed. Coefficient of skin friction, gradient of temperature and Sherwood number are numerically analyzed. The obtained results show that velocity field decreases through higher porosity and Forchheimer variables. Velocity and temperature curves shows an opposite trend versus magnetic parameter. A decay in concentration distribution is noticed through larger Schmidt number. Entropy generation amplifies against magnetic parameter and Brinkman number.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3