Analysis of Supply–Demand Relationship of Cooling Capacity of Blue–Green Landscape under the Direction of Mitigating Urban Heat Island

Author:

Guan Shengyu12,Liu Shuang1,Zhang Xin1,Du Xinlei1,Lv Zhifang1,Hu Haihui1

Affiliation:

1. College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China

2. Architectural Design and Research Institute of Harbin Institute of Technology, Harbin 150001, China

Abstract

Urban blue–green landscapes (UBGLs) have an important impact on the mitigation of UHIs. Clarifying the supply/demand relationship of the UBGLs’ cooling effect can serve as an indicator for high-quality urban development. We established the cooling capacity supply–demand evaluation systems of UBGLs by using multi-source data and a suitable landscape mesh size. Furthermore, we utilized the coupling coordination degree (CCD) model and the linear regression equation method to explore the spatial distribution of and variation in UBGLs’ cooling efficiency. The results showed the following: (1) according to the UBGL/SUHI landscape pattern index and the Pearson correlation coefficient of the land surface temperature (LST), the optimal mesh size was found to be 1200 m. (2) According to the unitary linear regression calculation, the matching of the cooling capacity supply and demand in the context of Qunli New Town showed obvious polarization; furthermore, Hanan new town and old town are more balanced than Qunli new town. (3) According to the spatiotemporal dynamic evolution of CCD, the proportion of moderate coordination- advancing cooling efficiency is the highest, reaching 35.3%. Second are moderate imbalance–hysteretic cooling efficiency (18.4%) and moderate imbalance–systematic balanced development (13.7%), with the old city highly coordinated area as the center and the coupling coordination type (gradually outward) turning into a state of serious imbalance, and then back into a state of high coordination. The findings of the investigations enriched a new viewpoint and practical scientific basis for UBGL system planning and cooling efficiency equity realizations.

Funder

Natural Science Foundation of Heilongjiang Province

Social Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3