Assessment of Urban Local High-Temperature Disaster Risk and the Spatially Heterogeneous Impacts of Blue-Green Space

Author:

Zhang Xinyu1,Ye Ruihan12,Fu Xingyuan1

Affiliation:

1. College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China

2. Zhejiang Province Institute of Architectural Design and Research, Hangzhou 310056, China

Abstract

Urban high-temperature disasters have gradually emerged as a significant threat to human society. Therefore, it is crucial to assess and identify areas at risk of such disasters and implement urban planning measures aimed at mitigating their impact. Additionally, a multitude of studies have demonstrated the significant cooling effect of urban blue-green spaces (UGBS), which play a pivotal role in urban environments. Incorporating a UBGS layout into planning and evaluation processes has substantial potential for mitigating high-temperature disasters. This paper presents the construction of a set of assessment processes for mitigating urban high-temperature disaster risk using a UBGS structure layout specifically for the main urban area of Harbin, China. We employed GIS and multi-source remote sensing imagery to develop local climate zone (LCZ) maps applicable to the designated study area. The differentiated impact of UBGS factors on high-temperature disaster risk was determined using the multi-scale geographical weighted regression model (MGWR). The results showed the following: (a) There was an overall low risk level, with 19.61% of the high-risk areas concentrated within the second ring road, forming a spatial pattern characterized by “one line, one cluster”. (b) The risk of the building category LCZs was generally higher than that of the natural category LCZs. The risk of the architectural LCZs could be summarized as the risk of low-density LCZs being smaller than that of the high-density LCZs, except LCZ 5. The mean value of the LCZ 2 and LCZ 5 types was the highest. (c) Through indicator screening, AREA_MN, SHAPE_MN, PD, and NP were found to be significant determinants influencing the risk, and the effectiveness and spatial differentiation of these main factors exhibited notable disparities. (d) By comparing different LCZ types, we concluded that the mitigation effect of these factors on risk may be interfered with by building height (BH); NP may be positively interfered with by BH; and PD and SHAPE_MN may be negatively interfered with by BH. The research results provided a new perspective and practical scientific basis for high-temperature disaster risk-mitigation planning based on UBGSs under LCZ classification.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3