Hsa-miR-874-3p Reduces Endogenous Expression of RGS4-1 Isoform In Vitro

Author:

Xu Feng-Ling12ORCID,Wang Bao-Jie1

Affiliation:

1. School of Forensic Medicine, China Medical University, Shenyang 110122, China

2. School of Forensic Medicine, Wannan Medical College, Wuhu 241002, China

Abstract

Background: The level of the regulator of G-protein signaling 4-1 (RGS4-1) isoform, the longest RGS4 isoform, is significantly reduced in the dorsolateral prefrontal cortex (DLPFC) of people with schizophrenia. However, the mechanism behind this has not been clarified. The 3′untranslated regions (3′UTRs) are known to regulate the levels of their mRNA splice variants. Methods: We constructed recombinant pmir-GLO vectors with a truncated 3′ regulatory region of the RGS4 gene (3R1, 3R2, 3R3, 3R4, 3R5, and 3R6). The dual-luciferase reporter assay was conducted to find functional regions in HEK-293, SK-N-SH, and U87cells and then predicted miRNA binding to these regions. We performed a dual-luciferase reporter assay and a Western blot analysis after transiently transfecting the predicted miRNAs. Results: The dual-luciferase reporter assay found that regions +401–+789, +789–+1152, and +1562–+1990 (with the last base of the termination codon being +1) might be functional regions. Hsa-miR-874-3p, associated with many psychiatric disorders, might target the +789–+1152 region in the 3′UTR of the RGS4 gene. In the dual-luciferase reporter assay, the hsa-miR-874-3p mimic, co-transfected with 3R1, down-regulated the relative fluorescence intensities. However, this was reversed when the hsa-miR-874-3p mimic was co-transfected with m3R1 (deletion of +853–+859). The hsa-miR-874-3p mimic significantly decreased the endogenous expression of the RGS4-1 isoform in HEK-293 cells. Conclusions: Hsa-miR-874-3p inhibits the expression of the RGS4-1 isoform by targeting +853–+859.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3