Multi-Tasking RGS Proteins in the Heart

Author:

Riddle Evan L.1,Schwartzman Raúl A.1,Bond Meredith1,Insel Paul A.1

Affiliation:

1. From the Department of Pharmacology (E.L.R., P.A.I.), University of California San Diego, La Jolla; the Department of Physiology (R.A.S., M.B.), University of Maryland School of Medicine, Baltimore; and the Department of Molecular Cardiology (M.B.), Lerner Research Institute, The Cleveland Clinic Foundation, Ohio.

Abstract

Regulator of G-protein–signaling (RGS) proteins play a key role in the regulation of G-protein–coupled receptor (GPCR) signaling. The characteristic hallmark of RGS proteins is a conserved ≈120-aa RGS region that confers on these proteins the ability to serve as GTPase-activating proteins (GAPs) for G α proteins. Most RGS proteins can serve as GAPs for multiple isoforms of G α and therefore have the potential to influence many cellular signaling pathways. However, RGS proteins can be highly regulated and can demonstrate extreme specificity for a particular signaling pathway. RGS proteins can be regulated by altering their GAP activity or subcellular localization; such regulation is achieved by phosphorylation, palmitoylation, and interaction with protein and lipid-binding partners. Many RGS proteins have GAP-independent functions that influence GPCR and non-GPCR–mediated signaling, such as effector regulation or action as an effector. Hence, RGS proteins should be considered multifunctional signaling regulators. GPCR-mediated signaling is critical for normal function in the cardiovascular system and is currently the primary target for the pharmacological treatment of disease. Alterations in RGS protein levels, in particular RGS2 and RGS4, produce cardiovascular phenotypes. Thus, because of the importance of GPCR-signaling pathways and the profound influence of RGS proteins on these pathways, RGS proteins are regulators of cardiovascular physiology and potentially novel drug targets as well.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3