Dual-Model GWAS Analysis and Genomic Selection of Maize Flowering Time-Related Traits

Author:

Fan Zehui1,Lin Shaohang1,Jiang Jiale1,Zeng Yukang1,Meng Yao1,Ren Jiaojiao1,Wu Penghao1

Affiliation:

1. College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China

Abstract

An appropriate flowering period is an important selection criterion in maize breeding. It plays a crucial role in the ecological adaptability of maize varieties. To explore the genetic basis of flowering time, GWAS and GS analyses were conducted using an associating panel consisting of 379 multi-parent DH lines. The DH population was phenotyped for days to tasseling (DTT), days to pollen-shedding (DTP), and days to silking (DTS) in different environments. The heritability was 82.75%, 86.09%, and 85.26% for DTT, DTP, and DTS, respectively. The GWAS analysis with the FarmCPU model identified 10 single-nucleotide polymorphisms (SNPs) distributed on chromosomes 3, 8, 9, and 10 that were significantly associated with flowering time-related traits. The GWAS analysis with the BLINK model identified seven SNPs distributed on chromosomes 1, 3, 8, 9, and 10 that were significantly associated with flowering time-related traits. Three SNPs 3_198946071, 9_146646966, and 9_152140631 showed a pleiotropic effect, indicating a significant genetic correlation between DTT, DTP, and DTS. A total of 24 candidate genes were detected. A relatively high prediction accuracy was achieved with 100 significantly associated SNPs detected from GWAS, and the optimal training population size was 70%. This study provides a better understanding of the genetic architecture of flowering time-related traits and provides an optimal strategy for GS.

Funder

Tianshan Innovation Team funding

Xinjiang Uygur Autonomous Region Natural Science Foundation key project

Tianshan Yingcai

Xinjiang Uygur Autonomous Region Major Science and Technology Special Projects

National Natural Foundation of China

XinJiang Agriculture Research System

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3