Dynamic Multi-Compartment Vehicle Routing Problem for Smart Waste Collection

Author:

Bouleft Yousra1,Elhilali Alaoui Ahmed2

Affiliation:

1. Modeling and Mathematical Structures Laboratory, Faculty of Science and Technology, Fez 2202, Morocco

2. Digital Engineering and Artificial Intelligence School, EuroMed University of Fes, Fez 2202, Morocco

Abstract

The rapid increase in urbanization results in an increase in the volume of municipal solid waste produced every day, causing overflow of the garbage cans and thus distorting the city’s appearance; for this and environmental reasons, smart cities involve the use of modern technologies for intelligent and efficient waste management. Smart bins in urban environments contain sensors that measure the status of containers in real-time and trigger wireless alarms if the container reaches a predetermined threshold, and then communicate the information to the operations center, which then sends vehicles to collect the waste from the selected stations in order to collect a significant waste amount and reduce transportation costs. In this article, we will address the issue of the Dynamic Multi-Compartmental Vehicle Routing Problem (DM-CVRP) for selective and intelligent waste collection. This problem is summarized as a linear mathematical programming model to define optimal dynamic routes to minimize the total cost, which are the transportation costs and the penalty costs caused by exceeding the bin capacity. The hybridized genetic algorithm (GA) is proposed to solve this problem, and the effectiveness of the proposed approach is verified by extensive numerical experiments on instances given by Valorsul, with some modifications to adapt these data to our problem. Then we were able to ensure the effectiveness of our approach based on the results in the static and dynamic cases, which are very encouraging.

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3