The Role of Bedrock Geochemistry and Climate in Soil Organic Matter Stability in Subtropical Karst Forests of Southwest China

Author:

Tang Tiangang1234,Hu Peilei1234,Zhang Wei1234ORCID,Xiao Dan1234ORCID,Tang Li125,Xiao Jun1234,Zhao Jie1234ORCID,Wang Kelin1234ORCID

Affiliation:

1. Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China

2. Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100, China

3. Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning 530201, China

4. Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China

5. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The stability of soil organic matter (SOM) plays a critical role in soil carbon (C) dynamics under global warming. However, the factors influencing SOM stability, particularly the significance of bedrock geochemistry and its hierarchical relationship with climate and soil properties, remain poorly understood. To address this gap, we conducted a study along a large climatic gradient (Δtemperature > 9 °C) in the subtropical karst forests of southwest China, quantifying SOM stability using thermal analysis and investigating the contributions of bedrock geochemistry, climate, and soil properties. Our results showed that SOM stability was positively correlated with mineral-associated organic C (MAOC) rather than particulate organic C. Hierarchical partitioning analysis further demonstrated that bedrock geochemistry was the predominant contributor to SOM stability variance, accounting for 23.7%. Following this, soil minerals contributed to 21.1%–22.6% of the variance, the mean annual temperature to 20.3%, and microbial biomass C to 17.2%. In particular, bedrock geochemistry—specifically the presence of calcium-rich bedrock—was found to enhance SOM stability by promoting the accumulation of exchangeable calcium and calcium carbonate in soils. Additionally, high temperature improved SOM stability by increasing the content and proportion of MAOC and soil pH. These results highlight the fundamental role of bedrock geochemistry in controlling SOM stability and emphasize the importance of considering hierarchical relationships among bedrock–soil–climate interactions for evaluating soil C dynamics.

Funder

Joint Funds of the National Natural Science Foundation of China

State Key Program of the National Natural Science Foundation of China

Science and Technology Innovation Program of Hunan Province

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3