Impact Assessment of Flood Damage in Urban Areas Using RCP 8.5 Climate Change Scenarios and Building Inventory

Author:

Kang Dong-Ho,Nam Dong-Ho,Jeung Se-Jin,Kim Byung-Sik

Abstract

Korea has frequent flood damage due to localized torrential rain and typhoons as a result of climate change, which causes many casualties and property damage. In particular, much damage occurs due to urban inundation caused by stream flooding as a result of climate change. Thus, this study aims to analyze the effect of climate change on flood damage targeting the Wonjucheon basin, which is an urban stream flowing the city. For future rainfall data, RCP (Representative Concentration Pathways) 8.5 climate change scenario data was used, statistical detailed using SDQDM (Spatial Disaggregation with Quantile Delta Mapping) techniques, and daily data was downscaled using Copula model. In general, the flood damage rate is calculated by using the area ratio according to the land use in the administrative district, but in this study, the flood damage rate is calculated using the flood damage rate proposed in the multi-dimensional flood damage analysis using Building Inventory. Using the created future rainfall data and current data, the runoff in the Wonjucheon basin, Wonju-si, South Korea, by rainfall frequency was calculated through the Spatial Runoff Assessment Tool (S-RAT) model, which was a distributed rainfall-runoff model. The runoff was calculated using 100-year and 200-year frequency rainfalls for a four-hour duration and the flood damage area was calculated by applying the calculated runoff to the Flo-2D model, was developed by Federal Emergency Management Agency (FEMA) in United State of America, which was a flood inundation model. As a result of calculating the amount of discharge, it was analyzed that the average amount of discharge increased by 16% over the 100-year, 200-year frequency. The calculated result of the flood damage area was analyzed and the analysis results showed that the future flood damage area increased by around 30% at the 100-year frequency and around 15% at the 200-year frequency. The estimated flood damage by rainfall frequency was calculated using the flood damage area by frequency and multi-dimensional analysis, and the analysis result exhibited that the damage increased by around 23% at the 100-year frequency and around 45% at the 200-year frequency.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3