Optimal Evacuation Route Planning of Urban Personnel at Different Risk Levels of Flood Disasters Based on the Improved 3D Dijkstra’s Algorithm

Author:

Zhu YangORCID,Li Hong,Wang Zhenhao,Li QihangORCID,Dou Zhan,Xie WeiORCID,Zhang ZhongrongORCID,Wang Renjie,Nie Wen

Abstract

In the event of a flood, the choice of evacuation routes is vital for personnel security. This is particularly true when road factors play an important role in evacuation time. In this study, the traditional Dijkstra algorithm for route planning is improved, and the evacuation model is improved from 2D to 3D. At the same time, the Lasso regression method is adopted to take the road factors into account in the pedestrian speed, and the location of shelter is selected and optimized through the calculation results, and then based on the improved 3D Dijkstra’s algorithm, an optimal evacuation route method in different flood disasters risk levels is proposed, which can make pedestrians reach the shelters within the shortest time. After taking into account road factors (road width, slope, non-motorized lane width, and pedestrian density), through the calculation of the pedestrian speed formula, the estimated evacuation time of pedestrians is obtained. By combining available shelters with evacuation routes, the optimized algorithm improves the evacuation efficiency facing different risk levels of flood disasters. The results show that when residents are confronted with flood disasters of once-in-20-year, once-in-50-year, and once-in-100-year, the proposed optimization algorithm can save 7.59%, 11.78%, and 17.78% of the evacuation time. Finally, according to the verification of the actual effect in Meishan Town, the proposed method of optimal evacuation route planning can effectively reduce the evacuation time of pedestrians, evaluate, and optimize the location of existing shelter, and provide suggestions for urban road reconstruction.

Funder

the Major Science and Technology Projects of Anhui Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Point Cloud Processing Methods for Slope Analysis: Uncertainty Evaluation;2024 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv);2024-06-12

2. Enhancing resilience of urban underground space under floods: Current status and future directions;Tunnelling and Underground Space Technology;2024-05

3. Network analysis for determining the fastest evacuation routes in flood-prone areas of the Tuntang Watershed, Indonesia;IOP Conference Series: Earth and Environmental Science;2024-03-01

4. An Approach for Evacuation Vulnerability Assessment with Consideration of Predicted Evacuation Time;Lecture Notes in Civil Engineering;2024

5. Real-time evacuation route optimization in the fire scenarios of cruise ships;Simulation Modelling Practice and Theory;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3