Sustainable Conservation Tillage Technique for Improving Soil Health by Enhancing Soil Physicochemical Quality Indicators under Wheat Mono-Cropping System Conditions

Author:

Sadiq Mahran,Li Guang,Rahim Nasir,Tahir Majid Mahmood

Abstract

An improved understanding of the effect of conservation tillage on soil physicochemical quality indicators is obligatory to manage and conserve soil in a climate change scenario. Tillage strategies change soil physicochemical characteristics, consequently modifying crop yields. Conservation tillage is generally used to improve the soil physicochemical characteristics globally. However, the impact of conservation tillage on different soil depths under wheat cultivation is not well documented. A 3-year study was conducted using a randomized complete block design (RCDB). The objective of this research was to specifically study soil physicochemical indicators (soil bulk density, porosity, hydraulic conductivity, water content, temperature, nitrogen, phosphorous, potassium, C:N ratio, pH) and (crop yield) in conventional tillage (CT), straw incorporation into the conventionally tilled soil (CTS), no-tillage (NT), and stubble-retention to the no-tilled soil (NTS) measures under wheat monocropping system across different soil layers. Averaged over 0–40 cm soil layer, the results depicted scarce differences among the tillage practices regarding soil bulk density, porosity, water content and hydraulic conductivity. CT increased soil temperature over conservation tillage systems. Overall, conservation tillage improved soil total nitrogen, available phosphorous, total potassium, C:N ratio and yield than CT, whilst it decreased soil pH. We conclude that NTS and CTS are the best strategies to enhance soil health under wheat mono-cropping system conditions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3