Changes in Soil Properties and Crop Yield under Sustainable Conservation Tillage Systems in Spring Wheat Agroecosystems

Author:

Yuan Jianyu1,Sadiq Mahran123,Rahim Nasir2,Tahir Majid Mahmood2,Liang Yunliang1,Zhuo Macao4,Yan Lijuan3,Shaheen Aqila2,Mahmood Basharat5,Li Guang1

Affiliation:

1. College of Forestry, Gansu Agricultural University, Lanzhou 730070, China

2. Department of Soil and Environmental Sciences, University of Poonch Rawalakot, Rawalakot, AJK 12350, Pakistan

3. College of Agriculture, Gansu Agricultural University, Lanzhou 730070, China

4. College of Geology and Jewelry, Lanzhou Resources and Environment Vocational and Technical University, Lanzhou 730070, China

5. Department of Plant Pathology, University of Poonch Rawalakot, Rawalakot, AJK 12350, Pakistan

Abstract

The cultivated soils in several semi-arid areas have very low organic matter due to climatic constraints that limit primary crop yield. Conservation tillage systems, outlined here as no tillage, no tillage with straw return and straw incorporation into the field, have been accepted as capable systems that preserve soil’s resources and sustain soil productivity. However, in semi-arid climates, there is presently no knowledge about the influence of different conservation tillage techniques on soil’s physical, chemical and biological properties at different soil depths in spring wheat fields and only little information about spring wheat yield in these management systems. Therefore, the present study was carried out with the objective of examining the impact of conservation tillage systems on soil properties (physical, chemical and biological) and spring wheat yield. The three conservation tillage treatments consisted of no tillage system (NT), wheat stubble return with no tillage (NTS) and straw incorporation with conventional tillage (CTS), as well as one conventional tillage (CT) control treatment, which were evaluated under randomized complete block design with three replications. The three conservation tillage treatments were compared with the conventional tillage control. Conservation tillage significantly increased the bulk density, gravimetric water content, water storage, hydraulic conductivity and soil aggregates and decreased the pore space and soil temperature compared to CT; however, no significant difference was found in the case of field capacity. Soil chemical properties in the 0–40 cm soil layer increased with conservation tillage compared to CT. Conservation tillage also notably increased the soil microbial counts, urease, alkaline phosphatase, invertase, cellulase and catalase activities relative to CT. Microbial biomasses (carbon and nitrogen) and wheat yield significantly elevated under conservation tillage compared to CT. Therefore, conservation tillage could significantly improve soil properties and maintain wheat yield for the research zone.

Funder

Key R&D projects in Gansu Province

Excellent doctoral program in Gansu Province

“Innovation star” project of excellent graduate students in Gansu Province

Industrial support plan project, China

Key Talent Projects in Gansu Province, China

Industrial support projects for colleges and universities in Gansu Province, China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3