Abstract
(1) Background: An age-related cognitive decline is commonly affecting the life of elderly with symptoms involved in progressive impairments to memory and learning. It has been proposed that probiotics could modulate age-related neurological disorders via the gut–brain axis. (2) Methods: To investigate the anti-aging effect of probiotic Lactobacillus plantarum GKM3, both survival tests and cognitive experiments were conducted in the SAMP8 mice model. The six-month-old SAMP8 (n = 20 in each gender) were fed with probiotic GKM3 at a dosage of 5.1 × 109 and 1.0 × 109 cfu/ kg B.W./day until their natural death. Then, the life span was investigated. Three-month-old SAMP8 (n = 10 in each gender) were administered GKM3 for 14 weeks. Then, the behavior tests and oxidation parameters were recorded. (3) Results: GKM3 groups showed significantly increased latency in the passive avoidance test and time of successful avoidance in the active avoidance test. The TBARS and 8-OHdG from mice brains also showed a significant reduction in the groups treated with GKM3. In addition, lower accumulation of the amyloid-β protein was found in SAMP8 mice brains with the supplement of GKM3. (4) Conclusions: These results indicated that L. plantarum GKM3 delayed the process of aging, alleviated age-related cognitive impairment, and reduced oxidative stress.
Subject
Food Science,Nutrition and Dietetics
Reference57 articles.
1. Impact and recognition of cognitive impairment among hospitalized elders
2. The Epidemiology and Impact of Dementia—Current State and Future Trends;Prince,2015
3. Oxidative stress, aging, and diseases
4. Free radicals, antioxidants in disease and health;Pham-Huy;Int. J. Biomed. Sci.,2008
5. An Update on Inflamm-Aging: Mechanisms, Prevention, and Treatment
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献