A Machine Learning Approach to Low-Cost Photovoltaic Power Prediction Based on Publicly Available Weather Reports

Author:

Maitanova NailyaORCID,Telle Jan-SimonORCID,Hanke BenediktORCID,Grottke Matthias,Schmidt Thomas,Maydell Karsten von,Agert CarstenORCID

Abstract

A fully automated transferable predictive approach was developed to predict photovoltaic (PV) power output for a forecasting horizon of 24 h. The prediction of PV power output was made with the help of a long short-term memory machine learning algorithm. The main challenge of the approach was using (1) publicly available weather reports without solar irradiance values and (2) measured PV power without any technical information about the PV system. Using this input data, the developed model can predict the power output of the investigated PV systems with adequate accuracy. The lowest seasonal mean absolute scaled error of the prediction was reached by maximum size of the training set. Transferability of the developed approach was proven by making predictions of the PV power for warm and cold periods and for two different PV systems located in Oldenburg and Munich, Germany. The PV power prediction made with publicly available weather data was compared to the predictions made with fee-based solar irradiance data. The usage of the solar irradiance data led to more accurate predictions even with a much smaller training set. Although the model with publicly available weather data needed greater training sets, it could still make adequate predictions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference32 articles.

1. Towards a Zero-Emission, Efficient, and Resilient Buildings and Construction Sector,2017

2. Climate Action Plan 2050. Principles and Goals of the German Government’s Climate Policy,2016

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DGImNet: A deep learning model for photovoltaic soiling loss estimation;Applied Energy;2024-12

2. Probabilistic net load forecasting framework for application in distributed integrated renewable energy systems;Energy Reports;2024-06

3. Photovoltaic power prediction method based on CNN-BIGRU-ATTENTION model;Eighth International Conference on Energy System, Electricity, and Power (ESEP 2023);2024-05-13

4. Probabilistic end-to-end irradiance forecasting through pre-trained deep learning models using all-sky-images;Advances in Science and Research;2024-01-02

5. Weather Report Analysis Prediction using Machine Learning and Data Analytics Techniques;2023 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI);2023-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3