Probabilistic end-to-end irradiance forecasting through pre-trained deep learning models using all-sky-images
-
Published:2024-01-02
Issue:
Volume:20
Page:129-158
-
ISSN:1992-0636
-
Container-title:Advances in Science and Research
-
language:en
-
Short-container-title:Adv. Sci. Res.
Author:
Chaaraoui SamerORCID, Houben Sebastian, Meilinger StefanieORCID
Abstract
Abstract. This work proposes a novel approach for probabilistic end-to-end all-sky imager-based nowcasting with horizons of up to 30 min using an ImageNet pre-trained deep neural network. The method involves a two-stage approach. First, a backbone model is trained to estimate the irradiance from all-sky imager (ASI) images. The model is then extended and retrained on image and parameter sequences for forecasting. An open access data set is used for training and evaluation. We investigated the impact of simultaneously considering global horizontal (GHI), direct normal (DNI), and diffuse horizontal irradiance (DHI) on training time and forecast performance as well as the effect of adding parameters describing the irradiance variability proposed in the literature. The backbone model estimates current GHI with an RMSE and MAE of 58.06 and 29.33 W m−2, respectively. When extended for forecasting, the model achieves an overall positive skill score reaching 18.6 % compared to a smart persistence forecast. Minor modifications to the deterministic backbone and forecasting models enables the architecture to output an asymmetrical probability distribution and reduces training time while leading to similar errors for the backbone models. Investigating the impact of variability parameters shows that they reduce training time but have no significant impact on the GHI forecasting performance for both deterministic and probabilistic forecasting while simultaneously forecasting GHI, DNI, and DHI reduces the forecast performance.
Funder
Bundesministerium für Bildung und Forschung
Publisher
Copernicus GmbH
Reference80 articles.
1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, http://tensorflow.org/ (last access: 26 December 2023), 2015. a, b 2. Amos, D. E.: Algorithm 644: A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order, ACM Trans. Math. Softw., 12, 265–273, https://doi.org/10.1145/7921.214331, 1986. a 3. Barnes, E. A., Barnes, R. J., and Gordillo, N.: Adding Uncertainty to Neural Network Regression Tasks in the Geosciences, arXiv [preprint], https://doi.org/10.48550/ARXIV.2109.07250, 2021. a, b, c, d, e 4. Bouktif, S., Fiaz, A., Ouni, A., and Serhani, M.: Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches, Energies, 11, 1636, https://doi.org/10.3390/en11071636, 2018. a 5. Bozkurt, Ö. Ö., Biricik, G., and Taysi, Z. C.: Artificial neural network and SARIMA based models for power load forecasting in Turkish electricity market, PLOS ONE, 12, 1–24, https://doi.org/10.1371/journal.pone.0175915, 2017. a
|
|