From Homogeneous to Heterogenized Molecular Catalysts for H2 Production by Formic Acid Dehydrogenation: Mechanistic Aspects, Role of Additives, and Co-Catalysts

Author:

Stathi Panagiota,Solakidou MariaORCID,Louloudi Maria,Deligiannakis Yiannis

Abstract

H2 production via dehydrogenation of formic acid (HCOOH, FA), sodium formate (HCOONa, SF), or their mixtures, at near-ambient conditions, T < 100 °C, P = 1 bar, is intensively pursued, in the context of the most economically and environmentally eligible technologies. Herein we discuss molecular catalysts (ML), consisting of a metal center (M, e.g., Ru, Ir, Fe, Co) and an appropriate ligand (L), which exemplify highly efficient Turnover Numbers (TONs) and Turnover Frequencies (TOFs) in H2 production from FA/SF. Typically, many of these ML catalysts require the presence of a cofactor that promotes their optimal cycling. Thus, we distinguish the concept of such cofactors in additives vs. co-catalysts: When used at high concentrations, that is stoichiometric amounts vs. the substrate (HCOONa, SF), the cofactors are sacrificial additives. In contrast, co-catalysts are used at much lower concentrations, that is at stoichiometric amount vs. the catalyst. The first part of the present review article discusses the mechanistic key steps and key controversies in the literature, taking into account theoretical modeling data. Then, in the second part, the role of additives and co-catalysts as well as the role of the solvent and the eventual inhibitory role of H2O are discussed in connection to the main mechanistic steps. For completeness, photons used as activators of ML catalysts are also discussed in the context of co-catalysts. In the third part, we discuss examples of promising hybrid nanocatalysts, consisting of a molecular catalyst ML attached on the surface of a nanoparticle. In the same context, we discuss nanoparticulate co-catalysts and hybrid co-catalysts, consisting of catalyst attached on the surface of a nanoparticle, and their role in the performance of molecular catalysts ML.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3