Estimating Human Wrist Stiffness during a Tooling Task

Author:

Phan Gia-Hoang,Hansen ClintORCID,Tommasino Paolo,Budhota Aamani,Mohan Dhanya Menoth,Hussain Asif,Burdet Etienne,Campolo Domenico

Abstract

In this work, we propose a practical approach to estimate human joint stiffness during tooling tasks for the purpose of programming a robot by demonstration. More specifically, we estimate the stiffness along the wrist radial-ulnar deviation while a human operator performs flexion-extension movements during a polishing task. The joint stiffness information allows to transfer skills from expert human operators to industrial robots. A typical hand-held, abrasive tool used by humans during finishing tasks was instrumented at the handle (through which both robots and humans are attached to the tool) to assess the 3D force/torque interactions between operator and tool during finishing task, as well as the 3D kinematics of the tool itself. Building upon stochastic methods for human arm impedance estimation, the novelty of our approach is that we rely on the natural variability taking place during the multi-passes task itself to estimate (neuro-)mechanical impedance during motion. Our apparatus (hand-held, finishing tool instrumented with motion capture and multi-axis force/torque sensors) and algorithms (for filtering and impedance estimation) were first tested on an impedance-controlled industrial robot carrying out the finishing task of interest, where the impedance could be pre-programmed. We were able to accurately estimate impedance in this case. The same apparatus and algorithms were then applied to the same task performed by a human operators. The stiffness values of the human operator, at different force level, correlated positively with the muscular activity, measured during the same task.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Workplace Well-Being in Industry 5.0: A Worker-Centered Systematic Review;Sensors;2024-08-23

2. Preliminary Analysis and Simulation of a Compact Variable Stiffness Wrist;Springer Proceedings in Advanced Robotics;2024

3. From art to part: Learning from the traditional smith in developing flexible sheet metal forming processes;Journal of Materials Processing Technology;2022-01

4. Soft wearable robots;Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics;2022

5. Towards a seamless experimental protocol for human arm impedance estimation in an interactive dynamic task;2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN);2021-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3