Deep Learning and Transformer Approaches for UAV-Based Wildfire Detection and Segmentation

Author:

Ghali RafikORCID,Akhloufi Moulay A.ORCID,Mseddi Wided SouideneORCID

Abstract

Wildfires are a worldwide natural disaster causing important economic damages and loss of lives. Experts predict that wildfires will increase in the coming years mainly due to climate change. Early detection and prediction of fire spread can help reduce affected areas and improve firefighting. Numerous systems were developed to detect fire. Recently, Unmanned Aerial Vehicles were employed to tackle this problem due to their high flexibility, their low-cost, and their ability to cover wide areas during the day or night. However, they are still limited by challenging problems such as small fire size, background complexity, and image degradation. To deal with the aforementioned limitations, we adapted and optimized Deep Learning methods to detect wildfire at an early stage. A novel deep ensemble learning method, which combines EfficientNet-B5 and DenseNet-201 models, is proposed to identify and classify wildfire using aerial images. In addition, two vision transformers (TransUNet and TransFire) and a deep convolutional model (EfficientSeg) were employed to segment wildfire regions and determine the precise fire regions. The obtained results are promising and show the efficiency of using Deep Learning and vision transformers for wildfire classification and segmentation. The proposed model for wildfire classification obtained an accuracy of 85.12% and outperformed many state-of-the-art works. It proved its ability in classifying wildfire even small fire areas. The best semantic segmentation models achieved an F1-score of 99.9% for TransUNet architecture and 99.82% for TransFire architecture superior to recent published models. More specifically, we demonstrated the ability of these models to extract the finer details of wildfire using aerial images. They can further overcome current model limitations, such as background complexity and small wildfire areas.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference70 articles.

1. Wildfires Ravaging Forestlands in Many Parts of Globehttps://www.aa.com.tr/en/world/wildfires-ravaging-forestlands-in-many-parts-of-globe/2322512

2. Fighting fire with science

3. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity

4. Canada Wildfire Factshttps://www.getprepared.gc.ca/cnt/hzd/wldfrs-en.aspx

5. Fire Sensing Technologies: A Review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3