Tiny-Object Detection Based on Optimized YOLO-CSQ for Accurate Drone Detection in Wildfire Scenarios

Author:

Luan Tian1ORCID,Zhou Shixiong1ORCID,Liu Lifeng1,Pan Weijun1

Affiliation:

1. Faculty of Air Traffic Management, Civil Aviation Flight University of China, Guanghan 618307, China

Abstract

Wildfires, which are distinguished by their destructive nature and challenging suppression, present a significant threat to ecological environments and socioeconomic systems. In order to address this issue, the development of efficient and accurate fire detection technologies for early warning and timely response is essential. This paper addresses the complexity of forest and mountain fire detection by proposing YOLO-CSQ, a drone-based fire detection method built upon an improved YOLOv8 algorithm. Firstly, we introduce the CBAM attention mechanism, which enhances the model’s multi-scale fire feature extraction capabilities by adaptively adjusting weights in both the channel and spatial dimensions of feature maps, thereby improving detection accuracy. Secondly, we propose an improved ShuffleNetV2 backbone network structure, which significantly reduces the model’s parameter count and computational complexity while maintaining feature extraction capabilities. This results in a more lightweight and efficient model. Thirdly, to address the challenges of varying fire scales and numerous weak emission targets in mountain fires, we propose a Quadrupled-ASFF detection head for weighted feature fusion. This enhances the model’s robustness in detecting targets of different scales. Finally, we introduce the WIoU loss function to replace the traditional CIoU object detection loss function, thereby enhancing the model’s localization accuracy. The experimental results demonstrate that the improved model achieves an mAP@50 of 96.87%, which is superior to the original YOLOV8, YOLOV9, and YOLOV10 by 10.9, 11.66, and 13.33 percentage points, respectively. Moreover, it exhibits significant advantages over other classic algorithms in key evaluation metrics such as precision, recall, and F1 score. These findings validate the effectiveness of the improved model in mountain fire detection scenarios, offering a novel solution for early warning and intelligent monitoring of mountain wildfires.

Funder

Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province

Program of China Sichuan Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3