Abstract
In this study, the gamma radiation properties of four types of surgical-grade stainless steel (304, 304L, 316 and 316L) were investigated. The effective atomic number Zeff, effective electron density Neff and half-value layer (HVL) of four types of surgical-grade stainless steel were determined via the mass attenuation coefficient (μ/ρ). The μ/ρ coefficients were determined experimentally using an X-ray fluorescence (XRF) technique and theoretically via the WinXCOM program. The Kα1 of XRF photons in the energy range between 17.50 and 25.29 keV was used from pure metal plates of molybdenum (Mo), palladium (Pd), silver (Ag) and tin (Sn). A comparison between the experimental and theoretical values of μ/ρ revealed that the experimental values were lower than the theoretical calculations. The relative differences between the theoretical and experimental values were found to decrease with increasing photon energy. The lowest percentage difference between the experimental and theoretical values of μ/ρ was between −6.17% and −9.76% and was obtained at a photon energy of 25.29 keV. Sample 316L showed the highest value of μ/ρ at the energies 21.20, 22.19 and 25.29 keV. In addition, the measured results of Zeff and Neff for all samples behaved similarly in the given energy range and were found to be in good agreement with the calculations. The equivalent atomic number (Zeff) of the investigated stainless-steel samples was calculated using the interpolation method to compare the samples at the same source energy. The 316L stainless steel had higher values of μ/ρ, Zeff and Zeq and lower values of HVL compared with the other samples. Therefore, it is concluded that the 316L sample is more effective in absorbing gamma radiation.
Funder
Deanship of Scientific Research at Al Imam Mohammad Ibn Saud Islamic University
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献